首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3749篇
  免费   277篇
  国内免费   19篇
工业技术   4045篇
  2024年   9篇
  2023年   83篇
  2022年   117篇
  2021年   272篇
  2020年   187篇
  2019年   250篇
  2018年   248篇
  2017年   256篇
  2016年   237篇
  2015年   183篇
  2014年   231篇
  2013年   404篇
  2012年   274篇
  2011年   337篇
  2010年   190篇
  2009年   154篇
  2008年   110篇
  2007年   77篇
  2006年   62篇
  2005年   32篇
  2004年   26篇
  2003年   33篇
  2002年   25篇
  2001年   19篇
  2000年   20篇
  1999年   9篇
  1998年   14篇
  1997年   10篇
  1996年   13篇
  1995年   9篇
  1994年   12篇
  1993年   10篇
  1992年   4篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   9篇
  1987年   10篇
  1986年   10篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1978年   4篇
  1977年   10篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1972年   4篇
排序方式: 共有4045条查询结果,搜索用时 25 毫秒
11.
12.
Flue gas emissions and the harmful effects of these gases urge to separate and capture these unwanted gases. Ionic liquids due to negligible vapor pressure, thermal stability, and wide electrochemical stability have expanded its application in gas separations. A comprehensive overview of the recent developments and applications of ionic liquid membranes (ILMs) for gas separation is given. The three general classifications of ILMs, such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs), and ionic liquid mixed‐matrix membranes (ILMMMs) along with their applications, for the separation of various mixed gases systems is discussed in detail. Furthermore, issues, challenges, computational study, and future perspectives for ILMs are also considered.  相似文献   
13.
ABSTRACT

A combined analytical and experimental study was carried out to analyze the effects of cryogenic cooling on temperature during turning of AZ31C magnesium alloy. Finite element method was employed to model and simulating the cryogenic and dry turning. Results obtained from the model were found to be in good agreement with the experimental observations. For the maximum temperature at the turned surface, the difference in the experimental and predicted value observed during dry and cryogenic turning was only 4 and 8% respectively. A significant reduction in the maximum temperature on the chip surface (around 35%) and tool surface (around 29%) was observed during the cryogenic turning compared to dry turning. This reduction in temperature was an attribute of liquid nitrogen, which produces intense cooling effect around the vicinity cutting zone where heat generation takes place hence enhancing the heat transfer. The isothermal region belonging to the highest temperature on the tool surface was also reduced by about 42%. The reduction in temperature during cryogenic conditions were found to be beneficial for the machining of magnesium alloys under safe conditions, reducing the risk of ignition and explosions, and also increases the sustainability of the process.  相似文献   
14.
In the present investigation, La1-xCoxCr1-yFeyO3 (x,y = 0.0, 0.12, 0.36, 0.60) perovskite was fabricated via a facile micro-emulsion route. The synthesized perovskites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques to examine the effect of Co and Fe ions on the physico-chemical properties. The ferroelectric, dielectric, and magnetic properties of La1-xCoxCr1-yFeyO3 were changed significantly as a function of dopants contents (Co and Fe ions). Outcomes revealed that the dielectric, ferroelectric and magnetic properties of LaCrO3 perovskite can be tuned significantly via Co and Fe doping and La0.40Co0.60Cr0.40Fe0.60O3 have potential for photocatalytic dye removal under (visible) light expoure. The photocatalytic activity (PCA) of the pristine LaCrO3 and La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst was evaluated under (visible) light irradiation for crystal violet (CV) dye. Experimental results revealed that La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst degrdae almost 77.21% CV dye with the rate constant value of 0.01475 min?1. In the presence of isopropyl alcohol (IPA) scavenger, the PCA of the La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst and rate constant value of the photocatalytic reaction decreased to 32.5% and 0.00491 min?1, suggesting the superoxide as main active specie. Results revealed that Co and Fe doping doped material is efficient for photocatalytic presentations under solar light expoure.  相似文献   
15.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
16.
Water Resources Management - In arid and semi-arid regions of the world, the occurrence of prolonged drought events (megadroughts) associated with climate change can seriously affect the balance...  相似文献   
17.
Direct Ethanol Fuel Cells (DEFCs) have fascinated remarkable attention on account of their high current density and being environmentally friendly. Developing efficient and durable catalysts with a simple and fast method is a great challenge in the practical applications of DEFCs. To this end, the bimetallic Pd–Ag with adjustable Pd:Ag ratios were synthesized via a simple and one-pot strategy on activated carbon as a support in this study. The Pd–Ag/C catalysts with different molar ratios were synthesized by simultaneous reduction of Pd and Ag ions in the presence of the ethanolic sodium hydroxide as a green reducing agent for the first time. Several different methods, including FE-SEM, HR-TEM, XRD, XPS EDX, ICP-OES, and BET were used to confirm the structure and morphology of the catalysts. The performance of catalysts was also examined in ethanol oxidation. Obtained results of electrochemical experiments revealed that the Pd3–Ag1/C catalyst had superior catalytic activity (2911.98 mAmg?1Pd), durability, and long-stability compared to the other catalysts. The excellent catalytic characteristic can be attributed to the synergistic effect between Pd and Ag. We presume that our simple method have the chance to be utilized as a proper method for the synthesis of fuel cell catalysts.  相似文献   
18.
19.
Listeria monocytogenes has continuously become a significant threat to consumers worldwide. The use of chemical-derived preservatives that are commonly associated with safety and nutritional issues has prompted the use of natural-based preservatives as a better alternative. Many bacterial strains including Paenibacillus polymyxa Kp10 have been reported to produce various antimicrobial proteins and compounds that are considered more natural. However, their stability in various physicochemical conditions should be examined before being applied in various types of food. In this study, the stability of four previously identified antilisterial proteins in P. polymyxa Kp10 upon exposure to several physicochemical conditions was examined. More than 80% residual antilisterial activity is conserved upon heat and proteinase K treatment. But, sensitivity to 24 h trypsin digestion has been observed. P1 and P2 proteins (histone-like DNA binding proteins HU) were sensitive to alkaline pH (pH 10-12) as compared with other proteins. More than 70% and 97% residual antilisterial activity were recovered after incubation in raw beef homogenates and simulated meat gravy model, respectively. However, the antilisterial activity of most proteins was highly compromised in chicken and salmon meat homogenates, and UHT cow milk. Inoculation of these proteins into Listeria-contaminated simulated meat gravy showed that all proteins exerted a bactericidal action against L. monocytogenes. P1 and P2 shared almost similar antilisterial activity rates, while P4 was the most potent antilisterial protein. The findings in this study could provide important preliminary data for future applications of these proteins as preservative in food products especially beef-based meat products.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号